Statistical Information Based Single Neuron Adaptive Control for Non-Gaussian Stochastic Systems

نویسندگان

  • Mifeng Ren
  • Jianhua Zhang
  • Man Jiang
  • Ye Tian
  • Guolian Hou
چکیده

Based on information theory, the single neuron adaptive control problem for stochastic systems with non-Gaussian noises is investigated in this paper. Here, the statistic information of the output within a receding window rather than the output value is used for the tracking problem. Firstly, the single neuron controller structure, which has the ability of self-learning and self-adaptation, is established. Then, an improved performance criterion is given to train the weights of the single neuron. Furthermore, the mean-square convergent condition of the proposed control algorithm is formulated. Finally, comparative simulation results are presented to show that the proposed algorithm is superior to the PID controller. The contributions of this work are twofold: (1) the optimal control algorithm is formulated in the data-driven framework, which needn’t the precise system model that is usually difficult to obtain; (2) the control problem of non-Gaussian systems can be effectively dealt with by the simple single neuron controller under improved minimum entropy criterion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(Preprint) AAS INFORMATION THEORETIC SPACE OBJECT DATA ASSOCIATION METHODS USING AN ADAPTIVE GAUSSIAN SUM FILTER

This paper shows an approach to improve the statistical validity of orbital estimates and uncertainties as well as a method of associating measurements with the correct space objects. The approach involves using an adaptive Gaussian mixture solution to the Fokker-Planck-Kolmogorov equation for its applicability to the space object tracking problem. The Fokker-Planck-Kolmogorov equation describe...

متن کامل

A Flexible Link Radar Control Based on Type-2 Fuzzy Systems

An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...

متن کامل

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

Distributed Linear Parameter Estimation: Asymptotically Efficient Adaptive Strategies

The paper considers the problem of distributed adaptive linear parameter estimation in multi-agent inference networks. Local sensing model information is only partially available at the agents and inter-agent communication is assumed to be unpredictable. The paper develops a generic mixed time-scale stochastic procedure consisting of simultaneous distributed learning and estimation, in which th...

متن کامل

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2012